Спирт из древесины

Вероятно, не один школьник, отвечая урок по химии, называл спирт из древесины древесным спиртом. Кто же, в самом деле, не скажет, что если спирт получен из древесины, значит это и есть древесный спирт?

Оказывается, однако, что спирт из древесины и древесный спирт — это два разных вещества.

Давно уже из дерева, путём сухой перегонки, наряду с другими веществами получают метиловый спирт СН3ОН. По способу получения ему дано было ещё название древесного спирта. И хотя этот спирт сейчас в промышленности получают преимущественно другим способом — синтезом из окиси углерода и водорода
СО + 2Н3 → СН3ОН
Его и теперь нередко называют древесным спиртом.

Но что же тогда подразумевают под «спиртом из древесины»? Здесь речь идёт о ближайшем гомологе метилового спирта-винном или этиловом спирте С2Н3ОН. И получают этот спирт не сухой перегонкой, а посредством совершенно других химических процессов — гидролиза древесины, т. е. разложения её в присутствии кислоты водой и последующего сбраживания образующегося продукта.

Что метиловый и этиловый спирты — два разных вещества, это можно видеть и по их составу (разное число атомов углерода и водорода в молекулах), и по разным температурам кипения и затвердевания, и по ряду других свойств. Но, пожалуй, самое разительное различие состоит в их физиологическом действии: метиловый спирт сильно ядовит и, будучи принят внутрь организма даже в небольших количествах, вызывает смертельный исход или потерю зрения.

Чтобы не путать названия веществ и точно знать, о каком спирте идёт речь, спирт из древесины (этиловый спирт) чаще называют гидролизным спиртом.

О производстве гидролизного спирта мы и хотим здесь рассказать.

Ещё в 1811 г. русский химик К. С. Кирхгоф установил, что крахмал при нагревании с раствором серной кислоты подвергается гидролизу, превращаясь в патоку или в глюкозу. Вскоре на использовании этой реакции возникла целая отрасль пищевой промышленности — крахмала-паточное производство'.

Клетчатка, или целлюлоза, имеет тот же состав, что и крахмал — (С6Н10О5). Естественно возникает вопрос: не обладает ли и она свойством подвергаться гидролизу?

Вскоре после открытия гидролиза крахмала почти одновременно русский химик Н. Фогель и французский учёный Г. Браконно сумели осуществить гидролиз клетчатки, нагревая её с раствором кислоты. Но лишь через много десятилетий, только в самые последние годы XIX в. появились первые полупромышленные установки по гидролизу древесины в Германии и в России. Впервые в мире крупное развитие гидролизная промышленность получила в нашей стране в годы пятилеток.

Техническое осуществление гидролиза древесины было сопряжено с большими трудностями. Они прежде всего заключались в большом расходе кислоты и сложности её регенерации для дальнейшего использования. Производство оказывалось более дорогим, чем получение спирта из крахмала картофеля и зерна.

Однако всё возраставший спрос на этиловый спирт, особенно со стороны промышленности синтетического каучука, и необходимость сбережения пищевых ресурсов требовали освоения новых источников сырья. Это сырьё в громадных количествах накапливалось на деревообрабатывающих заводах в виде отходов древесины - опилок, стружек, щепы и т. д., требовавших рационального использования их в целях экономии производства.

Подобно тому, как бензин из бесполезного когда-то отхода нефтепереработки превратился в продукт первой необходимости или каменноугольная смола из неприятного отброса стала ценнейшим источником ароматических соединений, отходы лесопиления, загромождавшие заводы и часто сжигавшиеся без нужды, стали использоваться для химической переработки.

Открылись более широкие возможности и для использования минеральных кислот в гидролизном производстве, так как мощного развития достигла основная химическая промышленность. Гидролизный спирт стал более дешёвым, чем спирт из зерна и картофеля.

Как велико значение гидролизного производства в сбережении пищевых ресурсов, можно видеть из следующего. Производство миллиона литров спирта путём гидролиза древесины высвобождает 3 тыс. т хлеба или 10 тыс. т картофеля.

Для такой замены потребуется лишь 10 тыс. т опилок, что легко может дать за год работы один лесопильный завод. Иными словами, тонна опилок при производстве спирта заменяет тонну картофеля

Экономическое значение гидролизного производства сильно возрастает ещё оттого, что одновременно со спиртом получаются другие ценные продукты — кормовые дрожжи, заменители дубильных веществ, литейные крепители, фурфурол, сухой лёд и т. д.

Особенно важно отметить получение кормовых дрожжей, богатых белками и представляющих огромную ценность для животноводства. Кормовых дрожжей может быть получено примерно до 200 т при производстве каждого миллиона литров спирта.

Проследим теперь, как же получают на гидролизном заводе спирт из древесины.

Весь производственный процесс слагается из трёх основных стадий:

а) гидролиз клетчатки (целлюлозы) до глюкозы, выражаемый, как известно, уравнением:

6H12О5)n + пН2О → nС6H12O6

б) сбраживание глюкозы в спирт в присутствии дрожжей:

С6Н12О6 — 2С2Н5ОН + 2СО2

в) выделение спирта из продуктов брожения.

Установлено, что первую стадию — гидролиз клетчатки – можно осуществлять достаточно быстро и полно, если для реакции применить в качестве катализатора разбавленную серную кислоту, а также нагревание до 180 — 185 ° и давление 10 — 12 атм. (Гидролиз может быть осуществлен и при других условиях. На некоторых заводах его ведут, например, в присутствии концентрированной соляной кислоты при,обычной температуре.)

Чтобы провести реакцию при таких «жёстких» условиях, применяют автоклав из толстой листовой стали, рассчитанный на повышенное давление'и выложенный внутри слоем бетона и керамическими плитками для защиты от кислоты. По типу реакции, осуществляемой в автоклаве, он называется ещё гидролизёром.

Гидролизёр по виду представляет собой высокий цилиндр с конической частью вверху и внизу. Емкость его до 50 м3. Через верхнюю горловину в гидролизёр загружаются при помощи транспортёра щепа и опилки. После загрузки горловина герметически закрывается крышкой. раствор кислоты подаётся по специальному трубопроводу, оканчивающемуся в аппарате разбрызгивателем; проникая сверху внизу, кислота равномерно смачивает всю загруженную древесную массу.

Нагревание смеси до нужной температуры осуществляется перегретым паром, поступающим по трубопроводу снизу. Спуск избыточного давления из аппарата производится через особое отверстие в верхней горловине. Процесс «варки» одной загрузки в автоклаве длится несколько часов.

Образующийся при гидролизе раствор, с содержанием 3 — 4% сахара, называемый гидролизатом, выводится из аппарата снизу по трубопроводу.

Гидролизёр
Рис. 1. Гидролизёр.

Остаток неразложпвшейся массы — технического лигнина по окончании процесса «выстреливается» из аппарата под давлением 7 — 8 атм через нижнюю горловину, закрываемую задвижкой. После сушки лигнин может быть использован в производстве пластмасс, пористого кирпича (в смеси с глиной), сухой штукатурки, в качестве наполнителя при производстве резины или в виде топлива.

Интересно устроено в гидролизёре приспособление для фильтрования отводимого раствора. Так как в аппарат загружается измельчённая древесная масса, то она, не будучи задерживаемой, конечно, легко уносилась бы вместе с раствором и быстро засоряла бы жидкостные коммуникации. Приспособить в автоклаве какой-либо фильтр, который должен работать в условиях повышенного давления и действия горячей кислоты, дело нелёгкое. Проблема была разрешена следующим образом. В гидролизёре по нижней конусной его части проложены наклонные трубки с отверстиями, прикрытые снаружи чешуйками. Чешуйки, обращённые вниз, не дают возможности древесной массе (опилкам) попадать в отверстия, гидролизат же свободно проходит в них. Проникшая в трубки жидкость стекает по ним в общий кольцевой канал, из которого и выводится по трубопроводу наружу.

Общая схема гидролизного производства, в основных его частях, представлена на рис. 2

Схема гидролизного производства
Рис. 2. Схема гидролизного производства

Из гидролизёра 1 лигнин поступает в циклон 2, а гидролизат — в испаритель 3. Назначение испарителя — выделить из раствора сахара летучие побочные продукты гидролиза. Так как давление в испарителе меньше, чем в автоклаве, гидролизат вскипает, и из него улетучиваются скипидар, метиловый спирт и другие вещества, которые затем улавливаются.

Следующей стадией производства должно быть получение спирта из сахара (глюкозы). Однако гидролизат даже после выделения из него летучих продуктов ещё нельзя пустить на сбраживание, так как в нём содержится много кислоты.

Поэтому, далее, он поступает в нейтрализатор 4, куда из мерника 5 подаётся известковое молоко. В результате взаимодействия серной кислоты с гидратом окиси кальция раствор становится нейтральным.

Н2SO4 + Са (ОН)2 = СаSO4 + 2Н2О

Для отвода выделяющихся при экзотермической реакции паров нейтрализатор имеет вытяжную трубу. Чтобы реакция нейтрализации шла быстрее и полнее использовался гидрат окиси кальция, в нейтрализатора вращается мешалка.

После нейтрализации возникает необходимость отделить гидролизат от осадка сернокислого кальция. Для этого он подается в отстойник 6, где выпадает основная часть соли, и, далее, после дополнительного охлаждения в градирне (на рисунке не показана) и в теплообменнике 7, — на фильтрпресс 8 для окончательной очистки.

После фильтрования раствор сахара подаётся в бродильный чан 9 ёмкостью 100 — 200 м3. Из сепаратора 10 сюда же поступает «дрожжевое молоко». Для нормальной жизнедеятельности дрожжей нужна температура 30°, поэтому раствор и подвергался ранее охлаждению. Процесс брожения сахара под действием фермента, вырабатываемого дрожжами, длится около 5 часов.

При больших масштабах производства реакция брожения одновременно является источником получения значительных количеств углекислого газа, из которого готовят «сухой лёд», широко применяющийся в качестве холодильного средства.

Раствор после брожения — бражка — с содержанием около 1,5% спирта поступает в сепаратор, где отделяется от дрожжей. Дрожжи снова идут на приготовление «дрожжевого молока» и вновь загружаются в бродильный чан (осуществляется циркуляционный процесс). Раствор же спирта после сепаратора собирается в сборник 11, откуда идёт на дальнейшую переработку-отделение его от примесей.

Верхняя часть гидролизёра
Рис.3. Верхняя часть гидролизёра

Третья стадия производства — выделение спирта из бражки и очистка его — осуществляется в колонных аппаратах (на рисунке не показаны), напоминающих по устройству и действию ректификационные колонны нефтеперегонных заводов.

Сначала нагретая бражка поступает на верхние тарелки бражной колонны. Из бражки здесь испаряются спирт и другие летучие вещества, смесь их паров поступает далее в спиртовую колонну. В нижней части бражной колонны собирается барда, не содержащая спирта, но содержащая некоторое количество не пробродившего сахара, вследствие чего её используют как питательную среду для выращивания кормовых дрожжей, используемых в животноводстве.

В спиртовой колонне, благодаря многократно повторяющимся на тарелках процессам испарения и конденсации, спирт отделяется от таких примесей, как сивушные масла, альдегиды, эфиры.

Чтобы очистить этиловый спирт от наиболее трудно отделимой примеси — метилового спирта, — производят ещё дополнительную ректификационную перегонку.

Нетрудно заметить выше, что при общей непрерывности технологического процесса основной аппарат гидролизного производства (гидролизёр) — это аппарат периодического действия. Непрерывность всего производственного процесса достигается за счёт того, что на заводе работает несколько гидролизёров, в которых процесс гидролиза (а также загрузки и выгрузки) производится в разное время, так что всегда есть гидролизат для последующей переработки.

Таким образом, мы видим, что гидролизное получение спирта из древесины — большой и сложный процесс.

Источник: «Книга для чтения по химии, ч.2». Изд-во министерства просвещения РСФСР, 1956., стр. 426-435


Фантастический роман Небо в алмазах

Необычная обложка фантастического романа

Какой представляют читатели обложку фантастического романа? Космической с мириадами звёзд? Да, но это столь избитый приём, что он кажется уже скучным. Загадочной с мордами неизвестных существ? Да, но морды тоже не в новинку, а действительно оригинальных и при этом не вычурных существ в фантастике давно не встречалось. Волшебной с абстрактными образами? Да, но в романе Татьяны Латуковой «Небо в алмазах» нет волшебных сюжетов, это космическая опера в рамках логичной физики, без нарушений второго закона термодинамики.

Розетки на обложке
Нейтральное оборудование из нержавеющей стали

Стальная мебель

Огромные города и протяжённые трассы дорог через всю страну рождают спрос на ту сферу производства и услуг, что всегда была востребованной, однако её новые масштабы потребовали и новых стандартов качества, и новой культуры производства. Речь об общественном питании. Гигиеническая безопасность - первое и важнейшее условие работы любого продуктового цеха, любой кондитерской фабрики и пиццерии. Де-факто стандартом качества стали столешницы из шлифованной нержавеющей стали, обеспечивающие максимальную биобезопасность...

Нейтральное оборудование из нержавеющей стали